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We consider a one-dimensional mesoscopic quantum ring filled with spinless electrons and threaded by a
magnetic flux, which carries a persistent current at zero temperature. The interplay of Coulomb interactions and
a single on-site impurity yields a nontrivial dependence of the persistent current on the size of the ring. We
determine numerically the asymptotic power law for systems up to 32 000 sites for various impurity strengths
and compare with predictions from Bethe ansatz solutions combined with bosonization. The numerical results
are obtained using an improved functional renormalization-group �fRG� method. We apply the density-matrix
renormalization-group �DMRG� and exact diagonalization methods to benchmark the fRG calculations. We use
DMRG to study the persistent current at low electron concentrations in order to extend the validity of our
results to quasicontinuous systems. We briefly comment on the quality of calculated fRG ground-state energies
by comparison with exact DMRG data.
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I. INTRODUCTION

Quantization of the magnetic flux was first observed in
superconducting cylinders.1,2 In normal electronic systems
the flux quantum �0=hc /e determines the period of the per-
sistent currents, which can be observed in mesoscopic one-
dimensional disordered metallic rings.3 Persistent currents in
metallic rings are induced only if the circumference of the
ring is not larger than the electron phase coherence length
and/or the electron’s mean-free path. Such conditions can be
easily obtained for sufficiently low temperatures at which
inelastic scattering from phonons is suppressed. Normally,
this happens at temperatures below 1 K and ring sizes of
about 1 �m. Impurities �disorder� in such metallic rings act
as elastic scatterers, and it is not surprising that persistent
currents can flow despite the nonzero resistance of the rings.

Interest in persistent current phenomena remains strong
both experimentally4–11 and theoretically.12–25 The main rea-
son for this is the fact that there still is a discrepancy between
experiment and theory. Experiments4,8 show persistent cur-
rents which are two orders of magnitude larger than theoret-
ical predictions for rings filled with noninteracting
electrons.13,19,26 If electron-electron interactions are included,
persistent currents increase for repulsive as well as attractive
electron interactions;14,16,27 however, the calculated currents
are still about five times smaller than the experimental data.
Recently, Bary-Soroker et al.24 provided an explanation for
the experimentally observed amplitude of the persistent cur-
rents by considering magnetic impurities and attractive inter-
actions.

Considerable theoretical effort has been invested into the
question whether the interplay between strong electron-
electron interactions, electron density, and disorder strength
can explain the large persistent currents observed experimen-
tally. Disorder usually gives rise to elastic scattering and con-
sequently should reduce the persistent current. Bouzerar et
al.15 claim that both electron-electron interactions and disor-
der decrease the persistent current, whereas the self-

consistent Hartree-Fock calculations by Cohen et al.18 sug-
gest that the current may be enhanced by a moderate disorder
due to screening effects. Other theoretical studies conclude
that electron-electron interaction could reduce or enhance the
current depending on the type of disorder present in the
system.14,28,29 Abraham and Berkovits14 conjectured that the
increase would be rather small and one-dimensional spinless
models at half filling cannot explain the results of single ring
experiments.

Among the theoretical methods used to study persistent
current phenomena are Hartree-Fock approximations,17,18

configuration-interaction and quantum Monte Carlo
simulations,30,31 bosonization,16 conformal field theory,19,20

the functional renormalization group �fRG�,21 and the
density-matrix renormalization group �DMRG�.21,28,29

In the present paper we study the interplay between
electron-electron interactions and a single impurity in a one-
dimensional system. For one-dimensional interacting sys-
tems, the presence of a single impurity is known to affect
their physical properties.32–35 We restrict our investigations
to the Luttinger liquid phase which is characterized by a
power-law decay of correlation functions in a sufficiently
large system.36 Our aim is to investigate the asymptotic be-
havior of the persistent current I as a function of the ring
length L, from which the power-law exponent may be ob-
tained I�L−�B−1. The exponent �B=K−1−1 is related to the
Luttinger liquid parameter K �Refs. 34–36� and depends on
the electron-electron interaction but it does not depend on the
impurity strength if L→�.

It is known that the asymptotics of the currents are
reached for smaller system sizes if sufficiently strong impu-
rities are considered.16,37,38 Nevertheless, it is necessary to
investigate relatively large systems in order to reach the
asymptotics. We therefore need suitable many-body tech-
niques which enable such calculations. We have chosen the
functional renormalization group,39–43 which proved to be a
rather useful tool in a previous study.21 However, for numeri-
cal reasons the asymptotic regime could not really be
reached in that work. In the present paper we improve the
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fRG technology such that system sizes up to about 32 000
lattice sites can be investigated. In order to benchmark the
fRG results we use DMRG calculations.44–47

We also study the asymptotic power-law decay of the per-
sistent current at low electron concentrations in order to
clarify differences between discrete lattice models �investi-
gated in this paper�, and continuous systems studied by
quantum Monte Carlo and configuration-interaction
methods.30,31 For this reason, we apply DMRG to our model
away from half filling �n= 1

2 �; in particular, we study the case
of quarter filling �n= 1

4 � as well as n= 1
8 and n= 1

16.
The paper is organized as follows. In Sec. II we define the

model for our calculations and briefly review the theory of
the persistent current. We introduce the fRG method in Sec.
III and related Appendixes. Section IV is devoted to the
DMRG method with a short discussion of its limitations.
Results are presented in Sec. V, gathering the numerical data
obtained by fRG, DMRG, and exact diagonalization �ED�.
We calculate the persistent current and extract the effective
exponent �eff related to the power-law decrease with respect
to the ring size L. Finally we show DMRG results for sys-
tems with low filling. The results are summarized in Sec. VI.

II. MODEL FOR SPINLESS FERMIONS

We consider a quantum ring of interacting spinless elec-
trons at zero temperature. The ring is pierced by a magnetic
flux � and contains one single impurity. This system is mod-
eled by the tight-binding Hamiltonian

H = − t�
�=1

L

�c�
†c�+1e−i�/L + H.c.� + U�

�=1

L

n�n�+1 + Vn1, �1�

written in terms of the electron creation and annihilation op-
erators c�

† and c� as well as the electron-density operator n�

=c�
†c�.
The Peierls factor e−i�/L with �=2�� /�0 describes the

influence of the magnetic field in terms of the magnetic flux
�.48 The flux quantum �0=hc /e is set to one in the follow-
ing. The hopping amplitude t between neighboring sites is
also set to one in order to define the energy scale. The
nearest-neighbor Coulomb interaction is denoted by U. An
�external� on-site impurity potential with strength V is placed
on the lattice site �=1 along the ring ��=1,2 , . . . ,L�. Peri-
odic boundary conditions are imposed by L+1�1.

Without electron-electron interaction �U=0� and impurity
�V=0� the single-particle energy levels 	m calculated from
Hamiltonian equation �1� depend quadratically on the mag-
netic flux �. The persistent current Im=−vm /L at energy level
m with the wave vector k=2���+m� /L is calculated from
the electron velocity vm,

vm��� = 2�
�	m���
�k���

= L
�	m���

��
. �2�

Summation over all occupied energy levels then yields the
total persistent current at temperature T=0,

I��� = − �
m=0

mmax �	m���
��

. �3�

The upper panel in Fig. 1 shows the parabolic energy-
band structure �V=0, U=0�. Consequently, the persistent
current is proportional to the magnetic flux � and inversely
proportional to the length L of the ring. For an odd number
of electrons in the ring one finds

I��� = −
vF

�L
�, − � 
 � � � , �4�

whereas for an even filling the current is given by

I��� = −
vF

�L
�� + � , − � 
 � � 0,

� − � , 0 
 � � � ,
� �5�

with vF being the Fermi velocity.
An impurity in the ring rounds off the cusps seen in this

function as shown in the central and lower panels of Fig. 1
for a weak and an intermediate impurity, respectively. For
strong impurities and odd filling, one finds I�
−vF sin��� /�L.16 The coupling strength V of an on-site im-
purity can be related to the physically more relevant trans-
mission coefficient at the Fermi wave vector kF

T�kF� =
4t2

4t2 + V2 , �6�

which holds at half filling in the noninteracting limit.49 With
this relation, the strengths of various impurities V used in this
paper may be compared.

For systems with finite electron-electron interaction U, the
many-body energy levels are shown in Fig. 2 for U=1 and
various impurity strengths V. The persistent currents are ob-
tained from the relation
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FIG. 1. �Color online� The five lowest-laying single-particle en-
ergy levels for a noninteracting system as functions of the magnetic
flux � for a ring of size L=128. The three panels correspond to V
=0, V=0.1, and V=1.0, respectively.
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I��� = −
�E0���

��
, �7�

where E0��� is the many-body ground-state energy at zero
temperature as plotted in Fig. 2. In general the system is a
Luttinger liquid. However, at half filling it is in the Luttinger
liquid phase only for �U�
2. At U=2, the system exhibits a
charge-density wave instability, and phase separation charac-
terizes the system for U�−2.

In this paper we focus on the Luttinger liquid phase for
which bosonization techniques and additional approxima-
tions predict that asymptotically �i.e., for large L� the persis-
tent current decays algebraically with increasing system size,

I � L−1−�B. �8�

The exponent �B is a function of the electron-electron inter-
action �regardless of the impurity strength V�. Only at half
filling, the exponent �B can be obtained analytically from a
Bethe ansatz solution21,36,50

�B =
2

�
arccos�−

U

2
	 − 1. �9�

Throughout this paper we often consider the case U=1 with
the corresponding �B= 1

3 . We determine �B from the Hamil-
tonian given in equation �1� using three different many-body
techniques: fRG, DMRG, and ED.

III. FUNCTIONAL RG SCHEME FOR
INTERACTING FERMIONS

A scheme for one-dimensional fermionic systems based
on the functional renormalization group, has been developed
by Meden et al.51 based on seminal work by Wetterich40 and

Morris.41 It has been applied to study transport properties of
quantum wires50–52 and rings.21

The fRG scheme of the present work is similar to the one
applied in the references cited above but uses a somewhat
different truncation procedure. Details of our method have
been presented recently.53 Here we review the essential steps
relevant for a system of spinless interacting fermions.

The effective average action �k �Ref. 40� for interacting
fermions evolves according to the fRG equation40,54

�

�k
�k
��,�� = −

1

2
Tr�
�k

�2�
��,�� + Rk�−1�Rk

�k
� . �10�

The system of L spinless electrons is described by an
L-component vector of Grassmann variables ���
= 
�1�� , . . . ,�L���, which describes the evolution of the in-
teracting fermionic system in imaginary time . The func-
tional derivative of �k with respect to �� and � is denoted by
�k

�2�. The trace in Eq. �10� is to be performed over the fermi-
onic states j=1, . . . ,L. The regulator Rk is introduced in or-
der to suppress thermal and quantum fluctuations at energy
or momentum scales k larger than any physical scale relevant
for our problem. With decreasing k, the regulator gradually
“switches on” such fluctuations until they are fully included
at k=0, i.e., at k=0 the regulator Rk vanishes. As a regulator
we choose Rk=Ck��k2−�2� with a large constant C and it
satisfies all requirements for a useful regulator as discussed
in more detail in Ref. 53. It has the additional advantage that
the integration over the frequencies � can be done analyti-
cally.

In order to solve functional differential equation �10� a
particular functional form for �k in terms of the Grassmann
variables �� , � is assumed

�k
��,�� = �
0

�

d�
�=1

L

��
���

�

�
���� + Uk
����,���� ,

�11�

where the “effective potential” Uk does not depend on deriva-
tives of the Grassmann variables with respect to the imagi-
nary time , i.e., it is represented as a Grassmann polynomial
in terms of �� and �

Uk
��,�� = ak,0 + �
j=1

L

ak,j j� j
�� j + ak,j,j+1� j

�� j+1

+ ak,j,j−1� j
�� j−1 + Uk�

j=1

L

� j
�� j� j+1

� � j+1, �12�

with the understanding that �0=�L and �L+1=�1. Of course,
in general this polynomial should have higher order terms
but those are neglected in the hope that they are small.

For half filling, the density-density interaction strength Uk
renormalizes according to
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FIG. 2. �Color online� The five lowest-laying many-body energy
levels obtained by DMRG as a function of the magnetic flux � for
a ring of size L=128 at half filling and electron-electron interaction
U=1. Upper panel: V=0, center panel: V=1, lower panel: V=2.
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Uk =
U

1 +
U

2�
�k −

2 + k2

4 + k2	
, �13�

as was suggested in Ref. 50. This result can be easily derived
within the fRG scheme applied here by using analogous ap-
proximations for the two-particle vertex as in Ref. 50. 
The
interaction parameter U is defined in the Hamiltonian given
in equation �1�.�

Inserting this ansatz for the effective average action on
both sides of the flow equation, performing the integration
over the frequencies �, and comparing terms with the same
Grassmann structure, it is straightforward to obtain the flow
equations for the coefficients ak,0 and ak,j j�

ak,0� =
1

2�
�

�=�k

ei�0+
ln det� 1

i�
gk

−1�i��	 ,

ak,j j� =
Uk

2�
�

�=�k
�

s=�1
ei�0+

gk,�j+s��j+s��i�� ,

ak,j�j�1�� = −
Uk

2�
�

�=�k

ei�0+
gk,j�j�1��i�� , �14�

with gk�i��= �ak+ i�1�−1 and ak= �ak,j j��. The convergence
factor ei�0+

is only needed at the beginning of the flow from
infinity down to a large constant k0.

At k=� the effective average action �k is given by the
classical action S,40,54 which is determined by the Hamil-
tonian given in equation �1�. Therefore, the initial conditions
at k=� for the solution of flow equations �14� are directly
obtained from Eq. �1�,

a�,0 = 0,

a�,j j = − V� j1 + �� j j ,

a�,j�j�1� = e�i�/L, �15�

with the understanding that aL,L+1=aL,1 and a1,0=a1,L. For
convenience we have added a chemical-potential term −�n�

to the Hamiltonian. Our initial conditions differ from those
of Ref. 21: in the present work the dependence on the mag-
netic flux � resides in the initial conditions for the off-
diagonal ajj� only while in Ref. 21 this dependence partly
resides in the free propagator, corresponding to a different
definition of the kinetic energy. Moreover, here we also in-
clude the chemical potential into the ajj� and not in the free
propagator.

In practice we must start the renormalization flow at a
finite k=k0. The initial flow from k=� to k=k0 is obtained
from an analytical solution of Eqs. �14�. For convenience this
calculation is briefly reviewed in Appendix A with the result

ak0,0 =
V

2
+

L

2
�U

2
− �	 ,

ak0,j j = �� − U�� j j − V� j1,

ak0,j�j�1� = e�i�/L. �16�

At half filling the chemical potential is given by �=U be-
cause of particle-hole symmetry. From the ground-state en-
ergy E0���=a0�k=0�+��n�, the persistent current is calcu-
lated using Eq. �3�.

For given L, Eqs. �14� represent a �large� set of 3L−1
nonlinear coupled complex-valued ordinary differential
equations. The calculation of the right-hand side of these
equations requires the inversion of a �potentially� large cyclic
tridiagonal matrix as well as the computation of the loga-
rithm of the determinant of such a matrix at each step of the
numerical integration of the differential equations. To ac-
complish this in an efficient manner is described in some
details in Appendix B.

IV. DMRG

The density-matrix renormalization group is a numerical
technique for the diagonalization of the very large matrices
typically encountered in quantum many-body calculations.
The technique is described in detail in Refs. 44–47. We use
DMRG for the calculation of the ground-state energy E0���.
In our case, the matrices to be diagonalized are complex
valued due to the Peierls factor e−i�/L entering Eq. �1�. Treat-
ing such complex-valued systems by DMRG does not lead to
numerical instabilities, apart from a few rare cases which
occur at very low electron fillings. Here, however, the nu-
merical diagonalization routines for complex matrices expe-
rience convergence difficulties for very large system sizes.
Also, the superblock diagonalization routines seldom require
more than 104 cycles for convergence as compared to the
standard �102 cycles typically necessary for real-valued
matrices. The memory requirements increase by a factor of
1.8 and the calculation time rises by a factor of 2.1 compared
to a standard real-valued DMRG.

We kept the DMRG truncation error as small as �
�10−9 for system sizes L�128; for smaller systems �
�10−15 could be achieved. The number of states kept are left
to vary such that the above truncation error condition could
be satisfied. It is well known that the efficiency and accuracy
of DMRG decreases substantially if periodic boundary con-
ditions are imposed. We checked the accuracy of our results
comparing with data obtained from the exact diagonalization
of the Hamiltonian for systems with up to L=24 sites at
various fillings.

We would like to point out that the calculations for strong
impurities V�10 and for large rings with L�100 require an
extremely careful treatment because differences between the
ground-state energies for different magnetic-flux values are
extremely small �E0��=0�−E0��=��� / �E0��=0���10−6.
For this reason, both the number of states kept and the num-
ber of the finite-size method sweeps must be sufficiently
large.

V. RESULTS

In this section we present and analyze numerical data ob-
tained by three different methods: fRG, DMRG, and ED. We
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study the dependence of the persistent currents on the ring
size L, the impurity strength V, the magnetic flux �, and on
the electron concentration n. Varying the electron-electron
interaction U within the Luttinger liquid regime −2
U
2
does not change physical properties qualitatively as we shall
see below. However, the weaker the electron-electron inter-
action the larger is the system size L needed to reach the
asymptotic power-law decay of the persistent current.21,30

The ground-state energies E0��� are calculated for 0
�

� and extended to the first Brillouin zone −�
�
� us-
ing the reflection symmetry of the energy around the origin
�=0 �cf. Figs. 1 and 2�. The persistent current in Eq. �7�
obtained by DMRG and ED is calculated using numerical
differentiation. The Fourier coefficients Ik of the currents,

I��� = �
k=1

�

Ik sin�k�� , �17�

can be calculated without numerical differentiation using an
integration by parts

Ik =
2k

�
�

0

�

d�E0���cos�k�� . �18�

Nevertheless, small numerical errors in the calculation of the
ground-state energy may significantly affect the calculation
of the power-law exponent �B 
cf. Eq. �8��. The Fourier
analysis for strong impurity strengths in Eq. �17� is well
justified due to the sinelike shape of the current, and the
higher coefficients Ik, k�2, decay to zero with increasing L
faster than I1. However, if the impurity V�1, the first Fou-
rier coefficient I1 may not suffice to characterize the decay of
the persistent current accurately.

For system sizes L
24 and for impurities V�100, ED
and DMRG yield essentially exact ground-state energies in
mutual agreement. The ground-state energy calculated from
fRG differs from the exact results of ED and DMRG at large
interactions, as shown in Fig. 3 for interactions within the
Luttinger liquid regime. This deviation signals the drastic
approximations involved in the fRG method used here, in

particular, the discarding of higher order vertex functions.
However, the shape of the ground-state energy as a function
of the magnetic flux can be reproduced quite well by this
method as can be seen from Fig. 4. Therefore, we can use
fRG calculations in order to obtain the persistent currents for
systems as large as L=3�104. For very strong impurities
�V�10� DMRG and fRG may run into numerical difficul-
ties, and we analyzed such cases by ED as is discussed in
more detail below.

A. fRG and DMRG analysis at half filling

Figure 4 shows persistent currents as functions of the flux
calculated at half filling �n= 1

2 � using DMRG and fRG for
various ring lengths L, and for an intermediate impurity
strength V=2 �corresponding to transmission T= 1

2 �. The data
indicate that, for small and intermediate ring lengths L, the
DMRG and fRG calculations agree rather well. DMRG cal-
culations are hardly feasible for L�256, and only fRG data
are available in order to study the large L limit.

Bosonization theory including additional approximations
predict a power-law decay of the persistent current at large L,
cf. Eq. �8�. In Fig. 5 we compare this asymptotic decay
�dashed lines� with the numerically determined first Fourier
coefficient of the persistent current LI1 in a logarithmic plot.
From bosonization one expects that LI1 decays asymptoti-
cally as L−�B. The open circles represent the fRG data and
the filled triangles represent the DMRG results. Again we see
the good agreement between both methods, and it is obvious
that the asymptotic decay does not depend on the impurity
strength �if at least V�0.1�, which ranges from rather weak
V=0.1 �T=0.9975� to very strong V=100 �T=0.0004�. The
asymptotic regime is reached at smaller L for stronger impu-
rities.

Notice a tiny deviation of the fRG data from the dashed
lines with the common power-law exponent �B at large L.
This is due to the approximations involved in the fRG
method and is known from studies of quantum wires.22 How-
ever, there are also numerical limitations: for large systems
the differences between currents calculated for different
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FIG. 3. �Color online� Ground-state energies at �=0 calculated
by DMRG �filled triangles�, ED �open circles�, and fRG �crosses� as
functions of U within the Luttinger liquid regime for L=16 and
V=1.
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FIG. 4. �Color online� Persistent currents calculated by fRG
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respond to L=4 and then the amplitudes decrease with increasing L.
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magnetic fluxes are so tiny that they cannot be resolved by
the floating point data representation of the computer, and
the current cannot be calculated reliably. This numerical
limitation also prevents us from calculating even larger sys-
tems.

In order to quantify the deviation of the numerical data
from the expected power law, we define an effective expo-
nent

�eff = −
� log10�LI1�
� log10�L�

, �19�

which is shown in Fig. 6 as a function of 1 / log10�L�. The
data labeled by the open and filled symbols are obtained
from the fRG and DMRG results shown in Fig. 5 using a
numerical derivative. If the impurity is weak �V=0.1�, the
effective exponent �eff deviates significantly from �B= 1

3 �the
horizontal dashed line�. It is expected that substantially

larger systems would need to be considered to approach the
asymptotics in this case. For V�0.5, the numerically deter-
mined exponents tend to saturate at �eff�0.35 which is
about 5% larger than the expected �B= 1

3 . Our result is in
good agreement with the leading U behavior, where the cor-
rection to the exponent for the quantum wire is known to be
U
� =0.318.22 As already stated, we attribute this deviation to
the approximations involved in the fRG. Similar results were
obtained in a study on open chains,50 where the same power-
law decay is extracted from the decay of the spectral weight
near the impurity site.

From our data analysis it emerges that the effective expo-
nents for larger L are also non-negligibly influenced by the
numerical limitations discussed above, which are seen in the
figure as small irregularities in the approach of the numerical
data to saturation. Notice that we are dealing with extremely
tiny effects observed in the exponent �eff. Thus, extremely
accurate calculations of the ground-state energy are the key
to the analysis of the effective exponent. There is another
feature of the effective exponent worth mentioning: it shows
a characteristic minimum at lengths 8�L�100 within the
range of V.

The effective exponent determined from the DMRG data
�full symbols� is systematically below the fRG results for all
but the very small systems. Since the DMRG data are ex-
pected to be accurate, one may conjecture that �eff ap-
proaches �B= 1

3 for L→�, if DMRG calculations for such
large systems would be feasible.

B. Nonmonotonous behavior of the effective exponent

Another interesting feature can be seen in Fig. 6. Both
fRG and DMRG data show that the result for the strongest
impurity V=100 appears to be out of sequence if compared
to the other V’s. To elucidate this further, we performed a
series of calculations using ED at smaller sizes L. Figure 7
shows the first Fourier coefficient of the persistent current I1
as a function of L on a logarithmic scale for on-site impuri-
ties in the range 1
V
104. In order to gather the data, the
Fourier coefficient is scaled with VL in Fig. 7. Furthermore,
we plot the absolute value of the Fourier coefficient in order
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FIG. 5. �Color online� The first Fourier coefficient I1 versus the
length of the ring L for U=1 and various V. The open circles and
the filled triangles, respectively, correspond to the fRG and DMRG
data. The dashed straight lines show the asymptotics �B= 1

3 . The
upper x axis shows the exact number of the sites L at which the
calculations were performed.
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to remove the even-odd effect discussed in Sec. II. The
straight dot-dashed line corresponds to �B= 1

3 .
Figure 8 shows corresponding calculations of the effective

exponent �eff for the same set of impurity strengths. The
dotted lines only serve as guides to the eye and should not be
taken as extrapolations. Again, it is obvious that the data for
the cases V�102 appear to be out of sequence as in Fig. 6. In
Fig. 9 we plot the relative difference ��= ��B−�eff� /�B in
order to quantify the dependence of the effective exponent
on the impurity strength V for several system sizes L. A
minimum of �� appears at V�4 for U=1. We, therefore,
identify three regions in the figure �for reachable system
sizes�: in the first region, 0�V�4, we observe the standard
behavior, i.e., the stronger the impurity, the faster the con-
vergence of �eff to �B. In the second region which starts at
around V�4 and ends around V=103, this behavior is re-
versed. In the third region V�103 the effective exponent �eff
saturates and does not change any more with increasing im-
purity strength.

C. DMRG study at low fillings

Studies of the persistent current at low fillings try to ad-
dress the question of differences between discrete lattice
models and continuous models of one-dimensional systems.
Such questions have been addressed in a recent comprehen-
sive numerical study.30,31 Discrete models mimic continuous
electron-gas models if the electron concentration n is such
that the cosine dispersion of the discrete system can reason-
ably well approximate the parabolic dispersion of the elec-
tron gas. Moreover, lattice models violate Galilean
invariance.55 In a Galilean invariant model without impurity
�V=0� the persistent current should not depend on the inter-
action U.

First we check whether the interaction dependence of the
current really disappears at lower fillings: Fig. 10 shows per-
sistent currents as a function of system size L for U=0, U
=1, and U=2 at various fillings n= 1

2 , 1
4 , and 1

8 . The currents
at half filling �full symbols� strongly depend on the electron-
electron interaction while the electron gas is better approxi-
mated at quarter filling �shaded symbols�. A negligibly small
dependence on U is found at n= 1

8 �open symbols� where
Galilean invariance is almost satisfied.

Figure 11 shows the decay of the persistent current as a
function of the ring size L for electron concentrations n= 1

2 ,
1
4 , 1

8 , and 1
16 on a logarithmic scale for V=2 �open symbols�

and V=10 �full symbols�. The asymptotic values �B�n� ex-
pected from the bosonization analysis36,50,56 are indicated by
the dashed straight lines corresponding to exponents �B�n
= 1

2 �= 1
3 , �B� 1

4 �=0.183 83, �B� 1
8 �=0.088 25, and �B� 1

16�
=0.042 940. On the scale of the figure the data seemingly
reach the asymptotics. A more detailed picture of how the
effective power-law exponents �eff approach the expected
asymptotic values �B is shown in Fig. 12. The upper and
lower panels show the effective exponent calculated for V
=2 and V=10, respectively, at various fillings n. It is obvious
that the �eff�n� do not converge to �B�n�, and substantially
larger system sizes L would need to be considered in order to
see convergence. From our data we, therefore, cannot sup-
port the suggestion30,31 that the asymptotic regime can be
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reached at a small number of electrons nL in continuous
models.

VI. SUMMARY

We studied the asymptotic power-law decay of persistent
currents using three different numerical methods �fRG,
DMRG, and ED�. To this end we improved the fRG method
so that systems with up to 3�104 sites could be treated. We
used DMRG and ED in order to benchmark the fRG results,
and confirmed a sufficiently good agreement between fRG,
DMRG, and ED calculations. We confirmed that the fRG is a
suitable method for extracting the asymptotic Luttinger
power-law exponent �B.

We found that �B which describes the decay of the per-
sistent current is about 5% overestimated by the fRG results

compared to expectations from bosonization and additional
approximation. This deviation we attribute to the approxima-
tion of the fRG method, and the effective exponent is known
to be correct to the leading order in the electron-electron
interaction from the calculations of the same exponent for
quantum wires. The accurate DMRG analysis cannot, unfor-
tunately, be extended to sufficiently large systems. However,
there are indications that the expected asymptotic values
could be reached, if larger systems could be calculated. It is
found that the effective exponent for a fixed impurity
strength V shows a typical minimum for lengths 8�L
�100 at half filling.

Generally, it is known that the stronger the impurity, the
faster the asymptotic regime is reached. However, we iden-
tified three regions for U=1: in the first region, 0�V�4, we
observed the standard behavior. �The case V=4 corresponds
to T= 1

5 .� In the second region 4�V�103 this behavior is
reversed. In the third region V�103 the dependence of the
effective exponent �eff on the impurity strength V saturates.

Since discrete lattice models are not Galilean invariant,
we decreased the electron filling down to n= 1

16 such that the
discrete Hamiltonian mimics a continuous electron gas with
a quadratic dispersion law. From our data we see that even at
low fillings, i.e., for quasicontinuous models, we need large
systems in order to reach the expected power-law exponents.
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APPENDIX A: SOLUTION OF THE fRG EQUATIONS
FOR LARGE k

Here we show how the initial conditions given in Eqs.
�16� are determined. We start from the Eqs. �14� for the
coefficients ak for large k

ak,j j� =
2U

�

sin�k0+�
k

, ak,j�j�1�� = 0, �A1�

noting that Uk=U for large k �0+ denotes a positive infini-
tesimal increment�. This equation is easily solved using the
initial conditions at k=� given in Eqs. �15� with the result

ak,j j = − U�1 −
2

�
Si�k0+�	� j j − V� j1 + �� j j ,

ak,j�j�1� = 0. �A2�

Here, Si�z� is the sine integral function. The impurity with
strength V is placed at site j=1. This result can now be used
in order to solve the equation for ak,0 for large k,
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FIG. 11. �Color online� Persistent currents versus system size L
for U=1 at various electron fillings n. The open and full symbols
correspond to the impurity V=2 and V=10, respectively. The slopes
of the dashed lines coincide with the asymptotic exponents �B.
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ak,0� =
L� − V

�

sin�k0+�
k

−
LU

�

sin�k0+�
k

�1 −
2

�
Si�k0+�	 ,

�A3�

where the expansion ln�1+x��x for x�1 has been used.
Integration of Eq. �A3� yields

ak,0 =
V

2
+

L

2
�U

2
− �	 , �A4�

where the limit 0+→0 has been performed.

APPENDIX B: NUMERICAL SOLUTION OF THE FLOW
EQUATIONS FOR THE SELF-ENERGIES AND THE

GROUND-STATE ENERGY

The solution of the flow equations for the self-energies
and ground-state energy 
Eqs. �14�� requires the calculation
of the inverse and determinant of �potentially� large cyclic
tridiagonal matrices at each step of the integration of a set of
ordinary differential equations. Of course, this could be
achieved with standard library routines. However, due to the
special form of Eqs. �14� we only need to determine the
cyclic tridiagonal part of these matrices. Therefore, in the
following we will develop methods adapted to our special
needs. As a consequence we achieve a significant speed up of
the numerical calculation as well as considerable reduction
in the computer memory requirements. Such improvements
enable us to treat large system sizes.

1. Inversion of cyclic tridiagonal matrices

For matrices M which can be represented as the sum of a
tridiagonal matrix T and a direct product of two vectors u
and v,

M = T + u � v , �B1�

the inverse can be obtained using the Sherman-Morrison
formula57

M−1 = T−1 −
z � w

1 + v · z
, �B2�

with

z = T−1u, w = �T−1�Tv . �B3�

A general cyclic tridiagonal matrix,

M =�
a1 b1 0 ¯ c1

c2 a2 b2 0

0 � � � ]

] cn−1 an−1 bn−1

bn ¯ 0 cn an

� , �B4�

can be written in form �B1� with the tridiagonal part T given
by

T =�
�1 b1 0 ¯ 0

c2 �2 b2 0

0 � � � ]

] cn−1 �n−1 bn−1

0 ¯ 0 cn �n

� , �B5�

with �1=2a1, �n=an+c1bn /a1, and �i=ai for 1� i�n. The
vectors u and v are defined by

u = �− a1,0, ¯ ,0,bn�, v = �1,0, ¯ ,0,− c1/a1� . �B6�

For the inversion of the tridiagonal part T, we used a method
inspired by Andergassen et al.,50 which is based on Ref. 58.
However, in our case the tridiagonal matrix is not complex
symmetric; therefore, we have to use an LU decomposition
of T instead of the LDU decomposition employed in Ref.
50. Details are described in the following subsection.

2. Implementation

According to Eq. �B2� the inversion of a general cyclic
tridiagonal matrix requires two essential steps: �i� the inver-
sion of a tridiagonal matrix, and �ii� the determination of the
vectors z and w.

�i� A tridiagonal matrix can be represented as a product of

two matrices T=LU= ŨL̃, where U, Ũ are upper diagonal,

and L, L̃ are lower diagonal matrices. From the LU decom-
position

T = LU =�
d1

c2 d2

� �

cn−1 dn−1

cn dn

�
��

1 u1

1 u2

� �

1 un−1

1
� , �B7�

with

d1 = �1, di = �i − ui−1ci, ui = bi/di, �B8�

one easily finds for 1� i� j�n the relations

�T−1�n,n = 1/dn, �T−1�i,j = − ui�T−1�i+1,j . �B9�

Similarly, from the ŨL̃ decomposition of T,
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T = ŨL̃ =�
1 ũ1

1 ũ2

� �

1 ũn−1

1
�

��
d̃1

c2 d̃2

� �

cn−1 d̃n−1

cn d̃n

� , �B10�

with

d̃n = �n d̃i = �i − ũici+1 ũi = bi/d̃i+1, �B11�

one obtains for 1� i� j�n the relations

�T−1�1,1 = 1/d̃1, �T−1�i,j = − ũj−1�T−1�i,j−1. �B12�

Combining Eqs. �B9� and �B12� yields a recursion relation
for the diagonal elements of T−1

�T−1�i+1,i+1 =
ũi

ui
�T−1�i,i, �B13�

with the initial condition given in Eq. �B12�. From the diag-
onal elements one then generates the upper diagonal as well
as the upper corner element using the relations given above.

Alternatively, the ŨL̃ decomposition yields the relation

�T−1�i,j = −
ci

d̃i

�T−1�i−1,j for 1 � j � i � n , �B14�

which is used to generate the lower diagonal and corner el-
ements, respectively.

�ii� The vector z is obtained from Eq. �B3�, Tz=LUz=u,
as follows: first we solve recursively Lz�=u for z�

z1� = u1/d1, zi� = �ui − cizi−1� �di for 1 � i 
 n ,

�B15�

and then obtain z recursively from Uz=z�

zn = zn�, zi = zi� − uizi+1 for 1 
 i � n . �B16�

In a similar way one determines w from TTw=v.

3. Determinant of a cyclic tridiagonal matrix

The determinant of a cyclic tridiagonal matrix is calcu-
lated using a formula given in Ref. 59

det�
a1 b1 0 ¯ c1

c2 a2 b2 0

0 � � � ]

] cn−1 an−1 bn−1

bn ¯ 0 cn an

�
= �− 1�n+1��

i=1

n

bi + �
i=1

n

ci	 + Tr �
i=1

n �ai − bi−1ci

1 0
	 ,

�B17�

with b0=bn. For large systems, the products in this formula
can easily underflow or overflow. This must be carefully con-
trolled appropriately.
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